Stochastic Gradient Descent Methods for Estimation with Large Data Sets
نویسندگان
چکیده
We develop methods for parameter estimation in settings with large-scale data sets, where traditional methods are no longer tenable. Our methods rely on stochastic approximations, which are computationally efficient as they maintain one iterate as a parameter estimate, and successively update that iterate based on a single data point. When the update is based on a noisy gradient, the stochastic approximation is known as standard stochastic gradient descent, which has been fundamental in modern applications with large data sets. Additionally, our methods are numerically stable because they employ implicit updates of the iterates. Intuitively, an implicit update is a shrinked version of a standard one, where the shrinkage factor depends on the observed Fisher information at the corresponding data point. This shrinkage prevents numerical divergence of the iterates, which can be caused either by excess noise or outliers. Our sgd package in R offers the most extensive and robust implementation of stochastic gradient descent methods. We demonstrate that sgd dominates alternative software in runtime for several estimation problems with massive data sets. Our applications include the wide class of generalized linear models as well as M-estimation for robust regression.
منابع مشابه
Asymptotic and finite-sample properties of estimators based on stochastic gradients∗
Stochastic gradient descent procedures have gained popularity for parameter estimation from large data sets. However, their statistical properties are not well understood, in theory. And in practice, avoiding numerical instability requires careful tuning of key parameters. Here, we introduce implicit stochastic gradient descent procedures, which involve parameter updates that are implicitly def...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملComparison of Modern Stochastic Optimization Algorithms
Gradient-based optimization methods are popular in machine learning applications. In large-scale problems, stochastic methods are preferred due to their good scaling properties. In this project, we compare the performance of four gradient-based methods; gradient descent, stochastic gradient descent, semi-stochastic gradient descent and stochastic average gradient. We consider logistic regressio...
متن کاملTrading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent
We present and study a distributed optimization algorithm by employing a stochastic dual coordinate ascent method. Stochastic dual coordinate ascent methods enjoy strong theoretical guarantees and often have better performances than stochastic gradient descent methods in optimizing regularized loss minimization problems. It still lacks of efforts in studying them in a distributed framework. We ...
متن کاملStochastic Gradient Descent in Continuous Time
We consider stochastic gradient descent for continuous-time models. Traditional approaches for the statistical estimation of continuous-time models, such as batch optimization, can be impractical for large datasets where observations occur over a long period of time. Stochastic gradient descent provides a computationally efficient method for such statistical learning problems. The stochastic gr...
متن کامل